Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The dysfunction of bone marrow mesenchymal stem cells (BMSCs) in balancing osteogenesis and adipogenesis plays an important role in the occurrence and development of osteoporosis. It's still unknown that whether ATP-binding cassette g1 (Abcg1), a well-proved regulation gene of adipogenesis, regulates osteogenesis. In our previous study, we identified 30 differentially expressed genes in osteogenesis and found the expression level ofAbcg1 negatively related to osteogenesis among these genes. Abcg1 is a well-proven adipogenesis regulator and cholesterol transporter, but it's role in osteogenesis remained unknown. In this study we found it may control osteogenesis, further elucidating the exact role of Abcg1 in regulating osteoblast differentiation would help propose new strategies to prevent and treat osteoporosis. Therefore, we established Abcg1 up- or down-expressed C3H10T1/2 and C2C12 cell lines and verified that Abcg1 knockdown enhanced expression of osteogenic factors runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP), while Abcg1 overexpression reversed the promoting effect. Furthermore, we confirmed that Abcg1 modulated osteogenesis via the Wnt/β-catenin and AMPK signaling pathways. taken together, these results suggest that Abcg1 may have an important role in regulating osteogenesis via Wnt/β-catenin and AMPK signaling pathways, and expect to be a potential therapeutic target for osteoporosis.

Citation

Lei Zhou, Shiwei Sun, Tieqi Zhang, Yueming Yu, Liang Xu, Haoran Li, Minghai Wang, Yang Hong. ATP-binding cassette g1 regulates osteogenesis via Wnt/β-catenin and AMPK signaling pathways. Molecular biology reports. 2020 Oct;47(10):7439-7449

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32929652

View Full Text