Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The voltage-gated sodium channels play a key role in the generation and propagation of the cardiac action potential. Emerging data indicate that the Nav1.8 channel, encoded by the SCN10A gene, is a modulator of cardiac conduction and variation in the gene has been associated with arrhythmias such as atrial fibrillation (AF) and Brugada syndrome (BrS). The voltage gated sodium channels contain a calmodulin (CaM)-binding IQ domain involved in channel slow inactivation, we here investigated the role of CaM regulation of Nav1.8 channel function, and showed that CaM enhanced slow inactivation of the Nav1.8 channel and hyperpolarized steady-state inactivation curve of sodium currents. The effects of CaM on the channel gating were disrupted in the Nav1.8 channel truncated IQ domain. We studied Nav1.8 IQ domain mutations associated with AF and BrS, and found that a BrS-linked mutation (R1863Q) reduced the CaM-induced hyperpolarization shift, AF-linked mutations (R1869C and R1869G) disrupted CaM-induced enhanced inactivation, and effects of CaM on both development and recovery from slow inactivation were attenuated in all pathogenic mutations. Our findings indicate a role of CaM in the regulation of Nav1.8 channel function in cardiac arrhythmias. Published by Elsevier Inc.


Liang Hong, Meihong Zhang, Arvind Sridhar, Dawood Darbar. Pathogenic mutations perturb calmodulin regulation of Nav1.8 channel. Biochemical and biophysical research communications. 2020 Nov 26;533(1):168-174

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32948286

View Full Text