Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The meninges not only surround the brain and the spinal cord but also the optic nerve. Meningeal-derived extracellular matrix (ECM) is a crucial component of the pial basement membrane, glia limitans and important for maintenance of optic nerve axon integrity, homeostasis and retinal ganglion cell health. To get closer insight into optic nerve meningeal-derived ECM composition, we performed proteomic analysis of the sheep optic nerve subarachnoid space (SAS). Candidate components were confirmed in cultures of primary human meningothelial cells (phMECs) and human optic nerve samples. Sheep optic nerve SAS samples were analysed by LC-MS, identified proteins were matched to their human orthologs and filtered using gene lists representing all major ECM components. To validate these findings digital droplet PCR (ddPCR) to evaluate mRNA expression of all candidate components identified was performed on cultures of phMECs. In addition, one protein per major ECM group was stained on human optic nerve sections and on phMEC cultures. Employing LC-MS, 1273 proteins were identified and subjected to bioinformatic analysis. Gene ontology analysis revealed six out of forty-four collagen types (1A1, 1A2, 3A1, 6A2, 6A3 and 14A1), three out of eleven laminin subunits (A4, B2, C1) and six out of twenty-seven hyaluronan binding proteins (CD44, versican (VCAN), C1q binding protein, neurocan (NCAN), brevican (BCAN) and hyalaluronan proteoglycan link protein 2 (HAPLN2)) were present in our cohort. DdPCR in phMEC cell culture confirmed presence of all candidate components except NCAN, BCAN and HAPLN2. Immunohistochemistry (IHC) staining on human optic nerve sections and immunofluorescence (IF) staining on in vitro cultured phMECs showed strong immunopositivity for collagen-typeI-α1 (COL1A1), lamininγ1 (LAMC1), and VCAN. Fibronectin (FN1) was exclusively present in cultures of phMECs. Using a combined bioinformatics and immunohistological approach, we describe the ECM composition of the optic nerve subarachnoid space. As this space plays an important role in maintaining optic nerve function, a better understanding of ECM composition in this delicate environment might be key to further pathophysiological insight into optic nerve degeneration and associated disorders. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.


Jie Hao, Corina Kohler, Hubrecht van den Dorpel, Hendrik P N Scholl, Peter Meyer, Hanspeter E Killer, Albert Neutzner. The extracellular matrix composition of the optic nerve subarachnoid space. Experimental eye research. 2020 Nov;200:108250

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32956686

View Full Text