Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Neurodegeneration of the optic nerve and retinal ganglion cells (RGCs) leads to progressive vision loss. As part of the central nervous system, RGCs show limited ability to regenerate and there is extensive search for neuroprotective agents for optic nerve damage. Methylene blue (MB) exhibits beneficial effects against various neurodegenerative diseases of the central nervous system. However, the mechanisms associated with its putative protection on neuronal survival and regeneration remain obscure. This study used the optic nerve transection model to examine the effects of MB on RGC survival, the expression of regenerative marker GAP-43 in RGCs and microglial activation. Axons of RGCs were injured by cutting the optic nerve. MB was injected intravitreally either immediately post-injury or delayed to 3 days post-injury. Using immunohistochemical staining, surviving RGCs, GAP-43-positive RGCs and microglial cells were quantified in wholemount retinas 7 days post-injury. Both immediate and delayed (a more clinically realistic situation) intravitreal injection of MB promoted RGC survival. MB also increased the number of GAP-43-positive RGCs, suggesting an enhanced ability of RGCs to regenerate. This was exemplified by the regenerative sprouting of axon-like processes from injured RGCs after MB treatment. The increase in RGC survival and GAP-43 expression correlated with an increase in the number of microglial cells. These results reveal that MB has survival-promoting and growth-promoting effects on RGCs after optic nerve injury. Together with the established safety profile of MB in humans, MB is a promising treatment for neurodegeneration and injury of the optic nerve. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Jacqueline C L Fung, Eric Y P Cho. Methylene blue promotes survival and GAP-43 expression of retinal ganglion cells after optic nerve transection. Life sciences. 2020 Dec 01;262:118462

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32961228

View Full Text