Correlation Engine 2.0
Clear Search sequence regions


  • 18S rRNA (2)
  • 3 mucin (1)
  • 4 and (1)
  • acid (5)
  • albuminuria (1)
  • allograft (30)
  • AMR (1)
  • analysis data (1)
  • antibodies (6)
  • antigen (1)
  • atn (1)
  • auc (20)
  • bk virus (5)
  • blood (4)
  • calcineurin (2)
  • case (2)
  • case- studies (3)
  • CCL2 (2)
  • CD10 (1)
  • CD3ε (2)
  • cellular (2)
  • cholesterol (1)
  • chronic failure (1)
  • cluster (1)
  • clusterin (2)
  • cohorts (10)
  • complement c4d (1)
  • CXCL10 (21)
  • CXCL13 (1)
  • CXCL9 (15)
  • cytokines (1)
  • diagnosis (35)
  • disease and (1)
  • donor (6)
  • eGFR (1)
  • essential (1)
  • factors (1)
  • focal- glomerulosclerosis (1)
  • FOXP3 (2)
  • function (3)
  • gaba (1)
  • gold (3)
  • graft (10)
  • HE4 (1)
  • help (8)
  • HPX (1)
  • immunoglobulin (1)
  • interferon gamma (1)
  • interleukin 10 (1)
  • interleukins (1)
  • l tryptophan (1)
  • LFABP (1)
  • ligand (3)
  • lipocalin (2)
  • meta analysis (5)
  • micro rnas (3)
  • MMP7 (1)
  • monocyte (1)
  • mrna (9)
  • mucin (1)
  • necrosis (2)
  • nephron (1)
  • neutrophil (2)
  • normal renal function (1)
  • patient (40)
  • peptides (2)
  • phase (2)
  • physicians (2)
  • podocalyxin (1)
  • prisma (2)
  • product (2)
  • prognostic (1)
  • proteinuria (3)
  • protocol (7)
  • reasons (1)
  • receptor 2 (1)
  • renal disease (1)
  • renal transplant (1)
  • research (1)
  • rna (4)
  • rt pcr (2)
  • serum (4)
  • signs (4)
  • studies samples (1)
  • studies time (1)
  • study case- control (4)
  • t- cell (22)
  • Tim 3 (1)
  • transplant (16)
  • TSPAN1 (1)
  • tubular epithelial cells (1)
  • tumor necrosis factor alpha (2)
  • urea (1)
  • vessels (1)
  • viral load (1)
  • virus receptor (1)
  • weight (1)
  • Sizes of these terms reflect their relevance to your search.

    Noninvasive tools for diagnosis or prediction of acute kidney allograft rejection have been extensively investigated in recent years. Biochemical and molecular analyses of blood and urine provide a liquid biopsy that could offer new possibilities for rejection prevention, monitoring, and therefore, treatment. Nevertheless, these tools are not yet available for routine use in clinical practice. In this systematic review, MEDLINE was searched for articles assessing urinary biomarkers for diagnosis or prediction of kidney allograft acute rejection published in the last five years (from January 1, 2015 to May 31, 2020). This review follows the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Articles providing targeted or unbiased urine sample analysis for the diagnosis or prediction of both acute cellular and antibody-mediated kidney allograft rejection were included, analyzed, and graded for methodological quality with a particular focus on study design and diagnostic test accuracy measures. Urinary C-X-C motif chemokine ligands were the most promising and frequently studied biomarkers. The combination of precise diagnostic reference in training sets with accurate validation in real-life cohorts provided the most relevant results and exciting groundwork for future studies.

    Citation

    Francesco Guzzi, Luigi Cirillo, Elisa Buti, Francesca Becherucci, Carmela Errichiello, Rosa Maria Roperto, James P Hunter, Paola Romagnani. Urinary Biomarkers for Diagnosis and Prediction of Acute Kidney Allograft Rejection: A Systematic Review. International journal of molecular sciences. 2020 Sep 19;21(18)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32961825

    View Full Text