Correlation Engine 2.0
Clear Search sequence regions


  • cornea (1)
  • indomethacin (9)
  • rabbits (2)
  • Sizes of these terms reflect their relevance to your search.

    We previously designed an ophthalmic dispersion containing indomethacin nanocrystals (IMC-NCs), showing that multiple energy-dependent endocytoses led to the enhanced absorption of drugs from ocular dosage forms. In this study, we attempted to prepare Pluronic F-127 (PLF-127)-based in situ gel (ISG) incorporating IMC-NCs, and we investigated whether the instillation of the newly developed ISG incorporating IMC-NCs prolonged the precorneal resident time of the drug and improved ocular bioavailability. The IMC-NC-incorporating ISG was prepared using the bead-mill method and PLF-127, which yielded a mean particle size of 50-150 nm. The viscosity of the IMC-NC-incorporating ISG was higher at 37 °C than at 10 °C, and the diffusion and release of IMC-NCs in the IMC-NC-incorporating ISG were decreased by PLF-127 at 37 °C. In experiments using rabbits, the retention time of IMC levels in the lacrimal fluid was enhanced with PLF-127 in the IMC-NC-incorporating ISG, whereby the IMC-NC-incorporating ISG with 5% and 10% PLF-127 increased the transcorneal penetration of the IMCs. In contrast to the results with optimal PLF-127 (5% and 10%), excessive PLF-127 (15%) decreased the uptake of IMC-NCs after instillation. In conclusion, we found that IMC-NC-incorporating ISG with an optimal amount of PLF-127 (5-10%) resulted in higher IMC corneal permeation after instillation than that with excessive PLF-127, probably because of the balance between higher residence time and faster diffusion of IMC-NCs on the ocular surface. These findings provide significant information for developing ophthalmic nanomedicines.

    Citation

    Noriaki Nagai, Takumi Isaka, Saori Deguchi, Misa Minami, Mizuki Yamaguchi, Hiroko Otake, Norio Okamoto, Yosuke Nakazawa. In Situ Gelling Systems Using Pluronic F127 Enhance Corneal Permeability of Indomethacin Nanocrystals. International journal of molecular sciences. 2020 Sep 25;21(19)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32992931

    View Full Text