Correlation Engine 2.0
Clear Search sequence regions


  • host cell (1)
  • human (2)
  • influenza (5)
  • influenza virus (2)
  • ligand (2)
  • receptors (1)
  • therapies (1)
  • Sizes of these terms reflect their relevance to your search.

    Owing to the emerging resistance to current anti-influenza therapies, strategies for blocking virus-cell interaction with agents that mimic interactions with host cell receptors are garnering interest. In this context, a multivalent presentation of sialyl groups on various types of scaffold materials such as dendrimers, liposomes, nanoparticles, and natural/synthetic polymers has been investigated for the inhibition of influenza A virus infection. However, the development of versatile antiviral agents based on monodisperse scaffolds capable of precise molecular design remains challenging. Whether an anisotropically extended filamentous nanostructure can serve as an effective scaffold for maximum inhibition of viral cell attachment has not been investigated. In this study, the preparation of a series of sialyllactose-conjugated filamentous bacteriophages (SLPhages), with controlled loading levels, ligand valencies, and two types of sialyllactose (α2,3' and α2,6'), is demonstrated. With optimal ligand loading and valency, SLPhages showed inhibitory activity (in vitro) against influenza A viruses at concentrations of tens of picomolar. This remarkable inhibition is due to the strong interaction between the SLPhage and the virus; this interaction is adequately potent to compensate for the cost of the bending and wrapping of the SLPhage around the influenza virus. Our study may open new avenues for the development of filamentous anti-viral agents, in which virus-wrapping or aggregation is the primary feature responsible for the blocking of cell entry. Copyright © 2020 Elsevier Inc. All rights reserved.

    Citation

    Jinhyo Chung, Younghun Jung, Caleb Hong, Subin Kim, Seokoh Moon, Eun A Kwak, Beom Jeung Hwang, Seong-Hyun Park, Baik Lin Seong, Dae-Hyuk Kweon, Woo-Jae Chung. Filamentous anti-influenza agents wrapping around viruses. Journal of colloid and interface science. 2021 Feb 01;583:267-278

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33002698

    View Full Text