Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Biofuel cells generate electric energy using an enzyme as a catalyst for an electrode but their stability and low battery output pose problems for practical use. To solve these problems, this study aimed to build a long-lasting and high-output biocathode as a catalyst using a highly stable hyperthermophilic archaeal enzyme, multi-copper oxidase, from Pyrobaculum aerophilum (McoP). To increase output, McoP was oriented and immobilized on single-walled carbon nanotubes (SWCNT) with a high specific surface area, and the electrode interface was designed to achieve highly efficient electron transfer between the enzyme and electrode. Type 1 copper (T1Cu), an electron-accepting site in the McoP molecule, is located near the C-terminus. Therefore, McoP was prepared by genetically engineering a CNT-binding peptide with the sequence LLADTTHHRPWT, at the C-terminus of McoP (McoP-CBP). We then constructed an electrode using a complex in which McoP-CBP was aligned and immobilized on SWCNT, and then clarified the effect of CBP. The amounts of immobilized enzymes on McoP-SWCNT and (McoP-CBP)-SWCNT complexes were almost equal. CV measurement of the electrode modified with both complexes showed 5.4 times greater current density in the catalytic reaction of the (McoP-CBP)-SWCNT/GC electrode than in the McoP-SWCNT/GC electrode. This is probably because CBP fusion immobilize the enzyme on SWCNTs in an orientational manner, and T1Cu, the oxidation-reduction site in McoP, is close to the electrode, which improves electron transfer efficiency. © 2020 American Institute of Chemical Engineers.

Citation

Hiroaki Sakamoto, Rie Futamura, Aina Tonooka, Eiichiro Takamura, Takenori Satomura, Shin-Ichiro Suye. Biocathode design with highly-oriented immobilization of multi-copper oxidase from Pyrobaculum aerophilum onto a single-walled carbon nanotube surface via a carbon nanotube-binding peptide. Biotechnology progress. 2021 Jan;37(1):e3087

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33016618

View Full Text