Correlation Engine 2.0
Clear Search sequence regions


  • angiogenesis (1)
  • auricular (2)
  • cartilage (9)
  • child (1)
  • chondrogenesis (1)
  • Costal (1)
  • ear cartilage (1)
  • humans (1)
  • rats (3)
  • rodent (3)
  • wound (1)
  • Sizes of these terms reflect their relevance to your search.

    To analyze the use of highly translatable three-dimensional (3D)-printed auricular scaffolds with and without novel cartilage tissue inserts in a rodent model. Preclinical rodent animal model. This prospective study assessed a single-stage 3D-printed auricular bioscaffold with or without porcine cartilage tissue inserts in an athymic rodent model. Digital Imaging and Communications in Medicine computed tomography images of a human auricle were segmented to create an external anatomic envelope filled with orthogonally interconnected spherical pores. Scaffolds with and without tissue inset sites were 3D printed by laser sintering bioresorbable polycaprolactone, then implanted subcutaneously in five rats for each group. Ten athymic rats were studied to a goal of 24 weeks postoperatively. Precise anatomic similarity and scaffold integrity were maintained in both scaffold conditions throughout experimentation with grossly visible tissue ingrowth and angiogenesis upon explantation. Cartilage-seeded scaffolds had relatively lower rates of nonsurgical site complications compared to unseeded scaffolds with relatively increased surgical site ulceration, though neither met statistical significance. Histology revealed robust soft tissue infiltration and vascularization in both seeded and unseeded scaffolds, and demonstrated impressive maintenance of viable cartilage in cartilage-seeded scaffolds. Radiology confirmed soft tissue infiltration in all scaffolds, and biomechanical modeling suggested amelioration of stress in scaffolds implanted with cartilage. A hybrid approach incorporating cartilage insets into 3D-printed bioscaffolds suggests enhanced clinical and histological outcomes. These data demonstrate the potential to integrate point-of-care tissue engineering techniques into 3D printing to generate alternatives to current reconstructive surgery techniques and avoid the demands of traditional tissue engineering. NA Laryngoscope, 131:1008-1015, 2021. © 2020 American Laryngological, Rhinological and Otological Society Inc, "The Triological Society" and American Laryngological Association (ALA).

    Citation

    Brian Chang, Ashley Cornett, Zahra Nourmohammadi, Jadan Law, Blaine Weld, Sarah J Crotts, Scott J Hollister, Isabelle M A Lombaert, David A Zopf. Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. The Laryngoscope. 2021 May;131(5):1008-1015

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33022112

    View Full Text