Correlation Engine 2.0
Clear Search sequence regions


  • acetyl (2)
  • acetyl coa (3)
  • blood (1)
  • cellular (1)
  • CPT1 (1)
  • CrAT (3)
  • cytoplasm (1)
  • dehydrogenases (1)
  • diet fat (1)
  • enzymes (3)
  • help (1)
  • humans (1)
  • LCAD (1)
  • liver (4)
  • long chain acyl- coa (13)
  • mice (1)
  • VLCAD (1)
  • Sizes of these terms reflect their relevance to your search.

    Calorie restriction (CR), an age delaying diet, affects fat oxidation through poorly understood mechanisms. We investigated the effect of CR on fat metabolism gene expression and intermediate metabolites of fatty acid oxidation in the liver. We found that CR changed the liver acylcarnitine profile: acetylcarnitine, short-chain acylcarnitines, and long-chain 3-hydroxy-acylcarnitines increased, and several long-chain acylcarnitines decreased. Acetyl-CoA and short-chain acyl-CoAs were also increased in CR. CR did not affect the expression of CPT1 and upregulated the expression of long-chain and very-long-chain Acyl-CoA dehydrogenases (LCAD and VLCAD, respectively). The expression of downstream enzymes such as mitochondrial trifunctional protein and enzymes in medium- and short-chain acyl-CoAs oxidation was not affected in CR. CR shifted the balance of fatty acid oxidation enzymes and fatty acid metabolites in the liver. Acetyl-CoA generated through beta-oxidation can be used for ketogenesis or energy production. In agreement, blood ketone bodies increased under CR in a time of the day-dependent manner. Carnitine acetyltransferase (CrAT) is a bidirectional enzyme that interconverts short-chain acyl-CoAs and their corresponding acylcarnitines. CrAT expression was induced in CR liver supporting the increased acetylcarnitine and short-chain acylcarnitine production. Acetylcarnitine can freely travel between cellular sub-compartments. Supporting this CR increased protein acetylation in the mitochondria, cytoplasm, and nucleus. We hypothesize that changes in acyl-CoA and acylcarnitine levels help to control energy metabolism and contribute to metabolic flexibility under CR. © 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

    Citation

    Volha Mezhnina, Ryan Pearce, Allan Poe, Nikkhil Velingkaar, Artem Astafev, Oghogho P Ebeigbe, Kuldeep Makwana, Yana Sandlers, Roman V Kondratov. CR reprograms acetyl-CoA metabolism and induces long-chain acyl-CoA dehydrogenase and CrAT expression. Aging cell. 2020 Nov;19(11):e13266

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33105059

    View Full Text