Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Citrinin (CIT), a known nephrotoxic mycotoxin, is mainly produced by Penicillium, Aspergillus, and Monascus species. It is a natural contaminant in cereal grains, foods, and feedstuff. Liupao tea (or Liubao tea) is a typical Chinese dark tea obtained via indigenous tea fermentation facilitated by microorganisms. Certain fungi present in Liupao tea that may produce CIT are a potential threat to consumer health. In the present study, various potential toxigenic mycoflora and the natural occurrence of CIT in Liupao tea were surveyed via the culture-dependent method, high performance liquid chromatography-fluorescence detection (HPLC-FLD), and ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Total mold counts ranged from 3.5 × 102 CFU/g to 2.1 × 106 CFU/g tea in 28 tea samples. A total of 218 fungal isolates belonging to five genera and 23 species were identified. Some of these strains, such as Aspergillus ochraceus, Aspergillus oryzae, Penicillium citrinum, and Penicillium chrysogenum, may potentially be a CIT-producing species. In addition, 32.7% of 113 Liupao tea samples were contaminated with CIT at concentrations ranging from 7.8 to 206.1 μg/kg. These CIT concentrations in Liupao tea are chiefly attributed to climatic conditions and water activity during storage that favor fungal proliferation and mycotoxin production. However, CIT could not be detected in Liupao tea stored for over 10 years. These results provide the first information about the potential toxigenic mycoflora and natural occurrence of CIT in Liupao tea. Therefore, storage conditions and fungal community must be monitored to ensure the quality of Liupao tea.

Citation

Zhongyu Li, Yan Mao, Jianwen Teng, Ning Xia, Li Huang, Baoyao Wei, Qingjin Chen. Evaluation of Mycoflora and Citrinin Occurrence in Chinese Liupao Tea. Journal of agricultural and food chemistry. 2020 Oct 28;68(43):12116-12123

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33108873

View Full Text