Correlation Engine 2.0
Clear Search sequence regions


  • agrostis (2)
  • amino acids (4)
  • bentgrass (3)
  • cell membrane (1)
  • droughts (1)
  • gaba (8)
  • heat (6)
  • plant (1)
  • polyamines (6)
  • signal (1)
  • sugars (1)
  • sugars acids (1)
  • Sizes of these terms reflect their relevance to your search.

    The frequency and severity of global abiotic stresses such as heat, drought, and salt stress are increasing due to climate changes. Objectives of this study were to investigate effects of γ-aminobutyric acid (GABA) priming on inducing plants' acclimation to abiotic stress associated with alterations of endogenous polyamines (PAs), amino acids, and sugars in creeping bentgrass (Agrostis stolonifera). The pretreatment with GABA fertigation significantly alleviated heat-, drought-, and salt-induced declines in leaf relative water content, chlorophyll content, cell membrane stability, photochemical efficiency (Fv/Fm), and performance index on absorption basis (PIABS), and also further decreased stress-caused decline in osmotic potential in leaves. The GABA priming uniformly increased total PAs, spermidine, amino acids involved in GABA shunt (GABA, glutamic acid, and alanine), and other amino acids (phenylalanine, aspartic acid, and glycine) accumulation under heat, drought, and salt stress. The GABA priming also significantly improved methionine content under heat and drought stress, maltose, galactose, and talose content under heat and salt stress, or cysteine, serine, and threonine content under drought and salt stress. Interestingly, the GABA priming uniquely led to significant accumulation of spermine, fructose, and glucose under heat stress, putrescine, proline, and mannose under drought stress, or arginine, trehalose and xylose under salt stress, respectively. These particular PAs, sugars, and amino acids differentially or commonly regulated by GABA could play critical roles in osmotic adjustment, osmoprotection, antioxidant, energy source, and signal molecular for creeping bentgrass to acclimate diverse abiotic stresses. Copyright © 2020 Elsevier Masson SAS. All rights reserved.

    Citation

    Zhou Li, Bizhen Cheng, Yan Peng, Yan Zhang. Adaptability to abiotic stress regulated by γ-aminobutyric acid in relation to alterations of endogenous polyamines and organic metabolites in creeping bentgrass. Plant physiology and biochemistry : PPB. 2020 Dec;157:185-194

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33120110

    View Full Text