Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis has a key role in normal growth and development. Laron syndrome (LS) is a type of dwarfism that results from mutation of the GH receptor, leading to congenital IGF1 deficiency. Epidemiological studies have shown that LS patients are protected from cancer. Genome-wide profiling led to the identification of a series of metabolic genes whose differential expression in LS might be linked to cancer protection. Nephronectin (NPNT) is an intracellular and secreted extracellular matrix protein with important roles in kidney development. NPNT was identified as the top-downregulated gene in LS-derived cells in comparison with ethnic-, age- and gender-matched controls (p-value = 0.0148; fold-change = -3.12 versus controls). NPNT has not been previously linked to the IGF1 signaling pathway. The present study was aimed at evaluating the hypothesis that NPNT is a new target for IGF1 action and that decreased expression of NPNT in LS is correlated with cancer protection. Basal and IGF1-stimulated NPNT expression were assessed in LS lymphoblastoid cells as well as in human breast and prostate cancer cells. NPNT silencing experiments were conducted using siRNA methodology. We provide evidence that IGF1 stimulates NPNT expression in LS-derived lymphoblastoids and various cancer cell lines. In addition, we demonstrate that NPNT silencing results in diminished activation of the AKT and ERK1/2 pathways, with ensuing decreases in cellular proliferation. Our data identified the NPNT gene as a target for IGF1 action. The clinical implications of the functional and physical interactions between NPNT and the IGF1 pathway merit further investigation. Copyright © 2020 Elsevier Ltd. All rights reserved.

Citation

Rive Sarfstein, Lena Lapkina-Gendler, Karthik Nagaraj, Zvi Laron, Haim Werner. Identification of nephronectin as a new target for IGF1 action. European journal of cancer (Oxford, England : 1990). 2020 Dec;141:115-127

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33130549

View Full Text