Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

During heart ischemia, the lack of oxygen in the myocardial cells causes pH and ion disturbances and cell death through opening mitochondrial permeability transition pores (mPTP). Considering the inhibitory effects of mitochondrial ATP-dependent potassium channels (mt-KATP) on these pores and anti-ischemic effects of morin, we hypothesized that it may exert its positive effects via activating mt-KATP as well as its anti-oxidative effects. Isolated rat hearts were perfused by Krebs-Henseleit solution enriched with the morin (0.25, 0.5 and 1 mg/L) or 5-hydroxydecanoate (5-HD, a mt-KATP blocker;100 μM) or both as needed 5 min before starting regional ischemia till the first 10 min of the reperfusion period. The reperfusion was developed with Krebs-Henseleit solution 60 or 120 min respectively for biochemical evaluations (lactate dehydrogenase and malondialdehyde level) or the assessment of myocardial infarct size. During the experiments, hemodynamic functions were recorded and cardiac arrhythmias were determined. Our findings demonstrated that morin reduced the infarct size. Also, morin perfusion could remarkably prevent the malondialdehyde over-production during ischemia. Total ventricular ectopic beats had the same significant changes as the malondialdehyde level, in both ischemia and reperfusion phases. Morin could also relatively improve the ischemia-induced hemodynamic dysfunction. All mentioned protective effects of morin were reversed by concomitant perfusion of 5-HD. Morin has protective effects against ischemic hearts through anti-oxidative effects. It also suggests a link between the cardioprotective effects of morin and mt-KATP. However, additional studies are required to prove this preliminary hypothesis. Copyright © 2020 Elsevier Inc. All rights reserved.

Citation

Maryam Rameshrad, Seyedeh Farzaneh Omidkhoda, Bibi Marjan Razavi, Hossein Hosseinzadeh. Evaluating the possible role of mitochondrial ATP-sensitive potassium channels in the cardioprotective effects of morin in the isolated rat heart. Life sciences. 2021 Jan 01;264:118659

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33148418

View Full Text