Correlation Engine 2.0
Clear Search sequence regions


  • 1 protein (1)
  • cyclin B1 (6)
  • Mad2 (5)
  • Mad2l1 (2)
  • meiosis (2)
  • mice (1)
  • oocytes (5)
  • protein biosynthesis (1)
  • Pum1 (6)
  • rna (6)
  • Sizes of these terms reflect their relevance to your search.

    Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation. © 2020. Published by The Company of Biologists Ltd.

    Citation

    Natsumi Takei, Yuki Takada, Shohei Kawamura, Keisuke Sato, Atsushi Saitoh, Jenny Bormann, Wai Shan Yuen, John Carroll, Tomoya Kotani. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. Journal of cell science. 2020 Dec 11;133(23)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33148609

    View Full Text