Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The UV/chlorine process is efficient for the abatement of micropollutants; yet, the formation of disinfection by-products (DBPs) and the toxicity can be altered during the treatment. This study investigated effluent organic matter characterization, DBP formation and toxicity alteration after the UV/chlorine treatment of wastewater; particularly, typical water matrix components in wastewater, namely, ammonia and bromide, were studied. The raw wastewater contained low levels of ammonia (3 µM) and bromide (0.5 µM). The UV/chlorine treatment efficiently eliminated 90 - 94% of fluorescent components. Compared with chlorination alone, a 20 min UV/chlorine treatment increased the formation of trihalomethanes (THMs), haloacetic acids (HAAs), chloral hydrate (CH), haloacetonitriles (HANs), trichloronitromethane (TCNM) and haloacetamides (HAcAms) by 90 - 508%. In post-chlorination after the UV/chlorine treatment, the formation of CH, HANs, TCNM and HAcAms increased by 77 - 274%, whereas the formation of both THMs and HAAs increased slightly by 11%. Meanwhile, the calculated cytotoxicity and genotoxicity of DBPs increased considerably after the UV/chlorine treatment and in post-chlorination, primarily due to the increased formation of HAAs and nitrogenous DBPs (N-DBPs). However, the acute toxicity of the wastewater to Vibrio fischeri and genotoxicity determined by the umu test decreased by 19% and 76%, respectively, after the 20 min UV/chlorine treatment. An additional 200 µM ammonia decreased the formation of all detected DBPs during the UV/chlorine treatment and 24 h post-chlorination, except that TCNM formation increased by 11% during post-chlorination. The acute toxicity of wastewater spiked with 200 µM ammonia was 32% lower than that of raw wastewater after the UV/chlorine treatment, but the genotoxicity was 58% higher. The addition of 1 mg/L bromide to the UV/chlorine process dramatically increased the formation of brominated DBPs and the overall calculated cytotoxicity and genotoxicity of DBPs. However, the acute toxicity and genotoxicity of the wastewater decreased by 7% and 100%, respectively, when bromide was added to the UV/chlorine treatment. This study illuminated that UV/chlorine treatment can decrease acute and geno- toxicities of wastewater efficiently. Copyright © 2020. Published by Elsevier Ltd.

Citation

Zhechao Hua, Dan Li, Zihao Wu, Ding Wang, Yonglin Cui, Xiongfei Huang, Jingyun Fang, Taicheng An. DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. Water research. 2021 Jan 01;188:116549

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33152588

View Full Text