Correlation Engine 2.0
Clear Search sequence regions


filter terms:
  • alkyl (1)
  • cosmic dust (2)
  • hydrocarbons (3)
  • methyl (1)
  • phase (3)
  • Sizes of these terms reflect their relevance to your search.

    Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch (AGB) stars. In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene are the most abundant species after H2 and CO. In a previous study, we addressed the chemistry of carbon (C and C2) with H2 showing that acetylene and aliphatic species form efficiently in the dust formation region of carbon-rich AGBs whereas aromatics do not. Still, acetylene is known to be a key ingredient in the formation of linear polyacetylenic chains, benzene and polycyclic aromatic hydrocarbons (PAHs), as shown by previous experiments. However, these experiments have not considered the chemistry of carbon (C and C2) with C2H2. In this work, by employing a sufficient amount of acetylene, we investigate its gas-phase interaction with atomic and diatomic carbon. We show that the chemistry involved produces linear polyacetylenic chains, benzene and other PAHs, which are observed with high abundances in the early evolutionary phase of planetary nebulae. More importantly, we have found a non-negligible amount of pure and hydrogenated carbon clusters as well as aromatics with aliphatic substitutions, both being a direct consequence of the addition of atomic carbon. The incorporation of alkyl substituents into aromatics can be rationalized by a mechanism involving hydrogen abstraction followed by methyl addition. All the species detected in gas phase are incorporated into the nanometric sized dust analogues, which consist of a complex mixture of sp, sp2 and sp3 hydrocarbons with amorphous morphology.

    Citation

    Gonzalo Santoro, Lidia Martínez, Koen Lauwaet, Mario Accolla, Guillermo Tajuelo-Castilla, Pablo Merino, Jesús M Sobrado, Ramón J Peláez, Víctor J Herrero, Isabel Tanarro, Á Lvaro Mayoral, Marcelino Agúndez, Hassan Sabbah, Christine Joblin, José Cernicharo, José Ángel Martín-Gago. The Chemistry of Cosmic Dust Analogues from C, C2, and C2H2 in C-Rich Circumstellar Envelopes. The Astrophysical journal. 2020 Jun 01;895(2)


    PMID: 33154601

    View Full Text