Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study sought to reveal the proteomic profiling of methicillin-resistant Staphylococcus aureus (MRSA)-derived extracellular vesicles (EVs) after exposure to imipenem. The advanced isobaric tags for relative and absolute quantitation (iTRAQ®) proteomic approach were used to analyze the alterations in MRSA-derived EV protein patterns upon exposure to imipenem. A total of 1260 EV proteins were identified and quantified. Among these, 861 differentially expressed exosome proteins (P < 0.05) were found. Multivariate analysis, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the identified proteins. Enrichment analysis of GO annotations indicated that imipenem primarily regulated the metabolic processes in MRSA. The metabolism of differentially expressed proteins was found to be the most significant in the combined analysis of the KEGG pathway analysis. Based on the results from the STRING analysis, 50S ribosomal protein L16 (RplP) and 30S ribosomal protein S8 (RpsH) were involved in the imipenem-induced MRSA-derived EVs. These results provide vital information on MRSA-derived EVs, increasing our knowledge of the proteome level changes in EVs upon exposure to imipenem. Moreover, these results pave the way for developing novel MRSA treatments.

Citation

Jichun Wang, Junrui Wang, Yanyan Wang, Peng Sun, Xiaohui Zou, Luo Ren, Chunxia Zhang, Enmei Liu. iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia microbiologica. 2021 Apr;66(2):221-230

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33165807

View Full Text