Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Corinna Göppner, Audrey H Soria, Maja B Hoegg-Beiler, Thomas J Jentsch. Cellular basis of ClC-2 Cl- channel-related brain and testis pathologies. The Journal of biological chemistry. 2021 Jan-Jun;296:100074

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33187987

View Full Text