Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The slow electron transfer rate is the bottleneck to the biological wastewater treatment process, and the nanoparticles (NPs) has been verified as a feasible strategy to improve the biological degradation efficiency by accelerating the electron transfer. Here, we employed the Gram-positive Bacillus megaterium Y-4, capable of synthetizing Pd(0), to investigate the intra/extracellular electron transfer (IET/EET) mechanisms mediated by NPs in aerobic denitrification for the first time. Kinetic and thermodynamic results showed that the bio-Pd(0) could significantly promote the removal of both nitrate and nitrite by improving affinity and decreasing activation energy. The enzymic activity and the respiration chain inhibition experiment indicated that the bio-Pd(0) could facilitate the nitrate biotic reduction by improving the Fe-S center activity and serving as parallel H carriers to replace coenzyme Q to selectively increase the electron flux toward nitrate in IET, while promoting the nitrite reduction by abiotic catalysis. Most importantly, the detection of DPV peak at -226~-287 mV proved that the one-electron EET via multiheme cytochrome-bound flavins also occurred in Gram-positive bacteria and enhanced in Pd-loaded cells. In addition, the remarkable increase of the formal charge in EPS indicated that the bio-Pd(0) could act as an electron shuttle to increase the redox site in EPS, eventually accelerating the electron hopping in long-distance electron transfer. Overall, this study expanded our understanding of the roles of bio-Pd(0) on the aerobic denitrification process and provided an insight into the IET/EET of Gram-positive strains. Copyright © 2020. Published by Elsevier Ltd.

Citation

Yating Jia, Danshi Qian, Yuancai Chen, Yongyou Hu. Intra/extracellular electron transfer for aerobic denitrification mediated by in-situ biosynthesis palladium nanoparticles. Water research. 2021 Feb 01;189:116612

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33189971

View Full Text