Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Nickel (Ni) is one of the most essential trace elements in the anaerobic digestion system. In this study, green chelating agent Ethylenediamine-N, N'-disuccinic acid (EDDS), common chelating agents with low biodegradability nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) were respectively used as ligands of Ni (II) to inspect the feasibility of enhancing methane production and reducing Ni dosage. In practice, continuous stirred-tank reactors (37 °C, 120 rpm) were operated with a mixture of pig manure and food waste as the substrate, and were supplied with extra Ni in the form of Ni (II) (0, 2.5, and 5.0 mg/L) or chelator‑nickel (EDDS-Ni, NTA-Ni and EDTA-Ni) complexes (2.5 mg/L). The results showed that compared with that of adding Ni (2.5 mg/L) individually, the methane production increased of 23.34%, 31.26% and 16.07% with the addition of EDDS-Ni, NTA-Ni and EDTA-Ni complexes (2.5 mg/L), respectively. Accompanying with that, the EDDS-Ni and NTA-Ni supplementations both significantly increased the F430 concentration of 28% and 36% on the day of peak methane production (day five). The BCR sequential extraction analysis indicated that the sum of Ni in water soluble and exchangeable fractions after digestion were increased of 43.28%, 39.41%, and 24.29%, respectively. Further, the acid-volatile sulfide (AVS) and the simultaneously extracted nickels (SEMNi) content in sediments confirmed that the chelator‑nickel improved Ni bioavailability due to dissolution of nickel ions from their sulfides. This study demonstrated that the addition of chelator-Ni complexes was a practicable method to enhance methane production and reduced Ni dosage. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Mei Zhang, Zijing Fan, Zhongda Hu, Xingzhang Luo. Enhanced anaerobic digestion with the addition of chelator-nickel complexes to improve nickel bioavailability. The Science of the total environment. 2021 Mar 10;759:143458

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33246732

View Full Text