Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Nonlinear sorption and isotherm nonlinearity of organic compounds by widely used porous resins such as XAD-7 are commonly interpreted as adsorption due to their large surface area. However, through displacement experiments using saturated 4-nitrophenol as the displacer, we observed that the nonlinear sorption and isotherm nonlinearity of selected organic compounds (i.e., naphthalene, nitrobenzenes, phenols and anilines) by XAD-7 was captured by a nonlinear partition mechanism rather than the adsorption mechanism. Nonlinear sorption of organic compounds by XAD-7 includes a nonlinear/displaced fraction and a linear/non-displaced fraction. A dual-mode (DM) model, including a nonlinear Dubinin-Ashtakhov (DA) model component and a linear model component, was developed to describe the nonlinear/displaced fraction and the linear/non-displaced fraction, respectively. The capacity of these two fractions are dependent on their solubility in water or octanol with positively linear relationships but not their molecular size, supporting the nonlinear partitioning mechanism. Besides van-der-waals force, hydrogen-bonding is primarily responsible for the nonlinear partitioning of phenols and anilines into XAD-7, while π-π interaction is responsible for the nonlinear partitioning of naphthalene and nitrobenzenes. The explored nonlinear partitioning mechanism for XAD-7 implies that the nonlinear sorption of organic compounds by porous resins should be recognized for their recovery and applications as sorbents. Copyright © 2020 Elsevier Ltd. All rights reserved.

Citation

Chenkai Zhou, Daohui Lin, Kun Yang. Isotherm nonlinearity and nonlinear partitioning of organic compounds into resin XAD-7: Insight from displacement experiments. Environmental pollution (Barking, Essex : 1987). 2020 Dec;267:115563

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33254628

View Full Text