Correlation Engine 2.0
Clear Search sequence regions


  • cutin (3)
  • fruit (3)
  • lipid (3)
  • native (1)
  • plant (5)
  • plant epidermis (1)
  • plant leaves (1)
  • prunus (3)
  • triterpenes (2)
  • wax (4)
  • Sizes of these terms reflect their relevance to your search.

    Barrier properties of the hydrophobic plant cuticle depend on its physicochemical composition. The cuticular compounds vary considerably among plant species but also among organs and tissues of the same plant and throughout developmental stages. As yet, these intraspecific modifications at the cuticular wax and cutin level are only rarely examined. Attempting to further elucidate cuticle profiles, we analysed the adaxial and abaxial surfaces of the sclerophyllous leaf and three developmental stages of the drupe fruit of Prunus laurocerasus, an evergreen model plant native to temperate regions. According to gas chromatographic analyses, the cuticular waxes contained primarily pentacyclic triterpenoids dominated by ursolic acid, whereas the cutin biopolyester mainly consisted of 9/10,ω-dihydroxy hexadecanoic acid. Distinct organ- and side-specific patterns were found for cuticular lipid loads, compositions and carbon chain length distributions. Compositional variations led to different structural and functional barrier properties of the plant cuticle, which were investigated further microscopically, infrared spectroscopically and gravimetrically. The minimum water conductance was highlighted at 1 × 10-5 m s-1 for the perennial, hypostomatous P. laurocerasus leaf and at 8 × 10-5 m s-1 for the few-month-living, stomatous fruit suggesting organ-specific cuticular barrier demands. Copyright © 2020 Elsevier Masson SAS. All rights reserved.

    Citation

    Clara Diarte, Aline Xavier de Souza, Simona Staiger, Ann-Christin Deininger, Amauri Bueno, Markus Burghardt, Jordi Graell, Markus Riederer, Isabel Lara, Jana Leide. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Plant physiology and biochemistry : PPB. 2021 Jan;158:434-445

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33257229

    View Full Text