Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The abnormal vascular permeability is associated with the formation of chronic rhinosinusitis with nasal polyps (CRSwNP). Previously, our study demonstrated that the nasal lavage fluid- (NLF-) derived exosomes from CRSwNP can promote the vascular permeability of human umbilical vein endothelial cells (HUVECs). miR-22-3p, a specific differentiated miRNA, is reported to regulate microvessels in some diseases. This study is purposed to explore the impact of exosomal miR-22-3p derived from CRSwNP on vascular permeability and identify the underlying targets. Exosomes were extracted from NLF of 26 CRSwNP patients and 10 control patients. Quantitative real-time PCR (qRT- PCR) was applied to evaluate the relative level of exosomal miR-22-3p. The impact of exosomal miR-22-3p on HUVECs was assessed by permeability assays in vitro. The potential molecular targets of miR-22-3p were investigated by applying such technologies as dual-luciferase reporter assay and western blot. miR-22-3p was upregulated in NLF-derived exosomes from CRSwNP. Exosomal miR-22-3p derived from CRSwNP enhanced the tubule permeability of HUVECs. Vascular endothelial- (VE-) cadherin (CDH5) was identified as a direct target of miR-22-3p. miR-22-3p regulated the vascular permeability by targeting VE-cadherin in HUVECs. Exosomal miR-22-3p derived from NLF of CRSwNP plays an important role in regulating vascular permeability by targeting VE-cadherin. Copyright © 2020 Wei Zhang et al.

Citation

Wei Zhang, Ting Zhang, Yongbing Yan, Jie Zhang, Yong Zhou, Yinyin Pei, Li Yao, Bo You, Jing Chen. Exosomal miR-22-3p Derived from Chronic Rhinosinusitis with Nasal Polyps Regulates Vascular Permeability by Targeting VE-Cadherin. BioMed research international. 2020;2020:1237678

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33274193

View Full Text