Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Given the large size of the world road network, the land area affected by vehicular emissions is extensive. This review provides the first global picture of the relationships between vehicular emitted potentially toxic elements, roadside soils, and risks to associated biota. The following potentially toxic elements that accumulate in roadside soils have been examined in this review: As, Co, Cr, Cu, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Se, Sb, Sn, Sr, Ti and Zn. The meta-analysis undertaken demonstrated an increase in concentrations of Cd, Pb, Zn, Pt, Pd and Rh in roadside soils compared to the mean global crustal concentrations. Positive correlations between potentially toxic element concentrations in roadside soil, plants, microbes, and animals were observed. Roadside studies have found increased potentially toxic element concentrations in plants and animals with increasing proximity to roads. The mean concentrations of Pb in roadside plants and vertebrates were at values above the World Health Organisation guidelines. Research has shown a range of impacts of potentially toxic elements in roadside soils on microbial activity including decreased litter decomposition, nitrogen fixation, nutrient cycling and enzyme synthesis. However, aside from the impact on microbial communities, there has been little research investigating the impacts of roadside soil elements on the associated biota. Thus, there is a need for research that investigates the toxicity of elements in roadside soils to plants and animals and to investigate the transfer of roadside elements through the food chain, and thus, risks posed to human health and the environment. Copyright © 2020 Elsevier Ltd. All rights reserved.


Shamali De Silva, Andrew S Ball, Demidu V Indrapala, Suzie M Reichman. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota. Chemosphere. 2021 Jan;263:128135

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33297123

View Full Text