Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Amplification of high GC content genes by PCR is a major challenge during the creation of recombinant GC-rich DNA constructs. This may be due to the difficulty in DNA denaturation or the possibility of forming secondary structures from DNA templates. Tools have been described to address the technical problems associated with the amplification of shorter sequences (<1000 bp). However, obstacles of synthesizing larger-sized GC-rich sequences by PCR continue to exist. This study aims to investigate the amplification of long and high GC content genes by PCR from the Mycobacterium bovis, a genome with GC content >60%, in comparison to amplifying a gene from the Listeria monocytogenes genome, a genome with a 37.8% GC content. Three PCR protocols were designed and experimented at various conditions with two M. bovis genes, Mb0129, a large gene of 1794 bp with 77.5% GC content, mpb83, a smaller gene of 663 bp in length with moderate GC content of 63%, together with LMHCC_RS00060, a large L. monocytogenes gene of 1617 bp with a lower GC content of 41.5%. The result demonstrated the superiority of the 2-step PCR protocol over other protocols in PCR amplification of Mb0129 when specific high fidelity DNA polymerases were used in the presence of an enhancer. The study highlighted the importance of manipulating the cycling conditions to perform the annealing and extension steps at higher temperatures while adjusting the ramp speed at a lower speed for a successful PCR amplification of a large GC-rich DNA template. A final PCR protocol was developed and enabled the amplification of 51 GC-rich targets. This can be a valuable tool for the amplification of long GC-rich DNA sequences for various downstream applications. Copyright © 2020. Published by Elsevier B.V.

Citation

Nadia Assal, Min Lin. PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. Journal of microbiological methods. 2021 Feb;181:106121

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33316290

View Full Text