Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The long-range biomechanical force propagating across a large scale may reserve the capability to trigger coordinative responses within cell population such as during angiogenesis, epithelial tubulogenesis, and cancer metastasis. How cells communicate in a distant manner within the group for self-assembly remains largely unknown. Here, we found that airway smooth muscle cells (ASMCs) rapidly self-assembled into a well-constructed network on 3D Matrigel containing type I collagen (COL), which relied on long-range biomechanical force across the matrix to direct cell-cell distant interactions. Similar results happened by HUVEC cells to mimic angiogenesis. Interestingly, single ASMCs initiated multiple extended protrusions precisely pointing to neighboring cells in distance (100-300 μm away or 5-10 folds of the diameter of a round single cell), depending on traction force sensing. Individual ASMCs mechanosensed each other to move directionally on both nonfibrous Matrigel only and Matrigel containing fibrous COL but lost mutual sensing on the cross-linked gel or coated glass due to no long-range force transmission. The bead tracking assay demonstrated distant transmission of traction force (up to 400 μm) during the matrix deformation, and finite element method modeling confirmed the consistency between maximum strain distribution on the matrix and cell directional movements in experiments. Furthermore, ASMCs recruited COL from the hydrogel to build a fibrous network to mechanically stabilize the cell network. Our results revealed principally that cells can sense traction force transmitted through the matrix to initiate cell-cell distant mechanical communications, resulting in cell directional migration and coordinated cell and COL self-assembly with active matrix remodeling. As an interesting phenomenon, cells seem to be able to "make a phone call" via long-range biomechanics, which implicates physiological importance such as for tissue pattern formation.


Mingxing Ouyang, Zhili Qian, Bing Bu, Yang Jin, Jiajia Wang, Yiming Zhu, Lei Liu, Yan Pan, Linhong Deng. Sensing Traction Force on the Matrix Induces Cell-Cell Distant Mechanical Communications for Self-Assembly. ACS biomaterials science & engineering. 2020 Oct 12;6(10):5833-5848

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33320570

View Full Text