Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This research investigates the use of seven natural deep eutectic solvents (NADESs) for valorisation of orange peel waste, with the final goal to propose a unique NADES for integrated biorefinery. Initial screening of NADESs revealed the excellent ability of cholinium-based NADES with ethylene glycol as hydrogen bond donor (ChEg50) to serve as a medium for orange peel-catalysed kinetic resolution (hydrolysis) of (R,S)-1-phenylethyl acetate with high enantioselectivity (ee = 83.2%, X  = 35%), as well as it's stabilizing effect on the hydrolytic enzymes (hydrolytic enzymes within ChEg50 peel extract were stabile during 20 days at 4 °C). The ChEg50 also showed a satisfactory capacity to extract D-limonene (0.5 mg gFW-1), and excellent capacity to extract polyphenols (45.7 mg gFW-1), and proteins (7.7 mg gFW-1) from the peel. Based on the obtained results, the integrated biorefinery of orange peel waste using ChEg50 in a multistep process was performed. Firstly, enantioselective kinetic resolution was performed (step I; ee = 83.2%, X  = 35%), followed by isolation of the product 1-phenylethanol (step II; h = 82.2%) and extraction of polyphenols (step III; h = 86.8%) from impoverished medium. Finally, the residual orange peel was analysed for sugar and lignin content, and results revealed the potential of waste peel for the anaerobic co-digestion process. The main bottlenecks and futures perspective of NADES-assisted integrated biorefinery of orange peel waste were outlined through SWOT analysis. Copyright © 2020 Elsevier Ltd. All rights reserved.

Citation

Manuela Panić, Martina Andlar, Marina Tišma, Tonči Rezić, Darijo Šibalić, Marina Cvjetko Bubalo, Ivana Radojčić Redovniković. Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. Waste management (New York, N.Y.). 2021 Feb 01;120:340-350

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33340816

View Full Text