Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pilot studies have hinted that serotonergic psychedelics such as psilocybin may relieve depression, and could possibly do so by promoting neural plasticity. Intriguingly, another psychotomimetic compound, ketamine, is a fast-acting antidepressant and induces synapse formation. The similarities in behavioral and neural effects have been puzzling because the compounds target distinct molecular receptors in the brain. In this opinion article, we develop a conceptual framework that suggests the actions of ketamine and serotonergic psychedelics may converge at the dendrites, to both enhance and suppress membrane excitability. We speculate that mismatches in the opposing actions on dendritic excitability may relate to these compounds' cell-type and region selectivity, their moderate range of effects and toxicity, and their plasticity-promoting capacities. Copyright © 2020 Elsevier Ltd. All rights reserved.

Citation

Neil K Savalia, Ling-Xiao Shao, Alex C Kwan. A Dendrite-Focused Framework for Understanding the Actions of Ketamine and Psychedelics. Trends in neurosciences. 2021 Apr;44(4):260-275

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33358035

View Full Text