Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Mitochondrial ATP-synthesis is catalyzed by a F1Fo-ATP synthase, an enzyme of dual genetic origin enriched at the edge of cristae where it plays a key role in their structure/stability. The enzyme's biogenesis remains poorly understood, both from a mechanistic and a compartmentalization point of view. The present study provides novel molecular insights into this process through investigations on a human protein called TMEM70 with an unclear role in the assembly of ATP synthase. A recent study has revealed the existence of physical interactions between TMEM70 and the subunit c (Su.c), a protein present in 8 identical copies forming a transmembrane oligomeric ring (c-ring) within the ATP synthase proton translocating domain (Fo). Herein we analyzed the ATP-synthase assembly in cells lacking TMEM70, mitochondrial DNA or F1 subunits and observe a direct correlation between TMEM70 and Su.c levels, regardless of the status of other ATP synthase subunits or of mitochondrial bioenergetics. Immunoprecipitation, two-dimensional blue-native/SDS-PAGE, and pulse-chase experiments reveal that TMEM70 forms large oligomers that interact with Su.c not yet incorporated into ATP synthase complexes. Moreover, discrete TMEM70-Su.c complexes with increasing Su.c contents can be detected, suggesting a role for TMEM70 oligomers in the gradual assembly of the c-ring. Furthermore, we demonstrate using expansion super-resolution microscopy the specific localization of TMEM70 at the inner cristae membrane, distinct from the MICOS component MIC60. Taken together, our results show that TMEM70 oligomers provide a scaffold for c-ring assembly and that mammalian ATP synthase is assembled within inner cristae membranes. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

Hela Bahri, Jeremie Buratto, Manuel Rojo, Jim Paul Dompierre, Bénédicte Salin, Corinne Blancard, Sylvain Cuvellier, Marie Rose, Amel Ben Ammar Elgaaied, Emmanuel Tetaud, Jean-Paul di Rago, Anne Devin, Stéphane Duvezin-Caubet. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. Biochimica et biophysica acta. Molecular cell research. 2021 Apr;1868(4):118942

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33359711

View Full Text