Correlation Engine 2.0
Clear Search sequence regions


  • behaviour (1)
  • biochar (12)
  • charcoal (2)
  • crude oil (2)
  • hydrogen (1)
  • investigates (1)
  • isomers (3)
  • Sizes of these terms reflect their relevance to your search.

    Inland oil spillage is one of the widespread sources of crude oil volatile organic compound emissions (CVEs) for which the long-term remedial solutions are often complex and expensive. This paper investigates the potential of a low-cost containment solution for contaminated solids by volatile organic compounds (VOCs) using biochar. The results of an extensive experimental investigation are presented on the sorption kinetics of xylene isomers (one type of the most frequently detected CVEs) on commercial biochar produced by prevalent feedstocks (wheat, corn, rice and rape straw as well as hardwood) at affordable temperatures (300-500°C). Chemical and physical properties of biochar were analysed in terms of elemental composition, scanning electron microscopy, specific surface area, ATR-FTIR spectra and Raman spectrometry. We show that for high-temperature biochar with similar surface chemistry, the sorption efficiency is mainly controlled by porous structure and pore size distribution. Biochar samples with higher specific surface area and higher volume of mesopores showed the highest sorption capacity (45.37-50.88 mg/g) since the sorbate molecules have more access to active sites under a greater intra-particle diffusion and elevated pore-filling. P-xylene showed a slightly higher sorption affinity to biochar compared to other isomers, especially in mesoporous biochar, which can be related to its lower kinetic diameter and simpler molecular shape. The sorption capacity of biochar produced at higher pyrolysis temperatures was found to be more sensitive to changes in ambient temperature due to dominant physical adsorption. Elovich kinetic model was found to be the best model to describe xylenes' sorption on biochar which indirectly indicates π-π stacking and hydrogen bonding as the main mechanism of xylene sorption on these types of biochar. Copyright © 2020 Elsevier Ltd. All rights reserved.

    Citation

    Hamid Rajabi, Mojgan Hadi Mosleh, Parthasarathi Mandal, Amanda Lea-Langton, Majid Sedighi. Sorption behaviour of xylene isomers on biochar from a range of feedstock. Chemosphere. 2021 Apr;268:129310

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 33359840

    View Full Text