Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

It is widely accepted that the commensal gut microbiota contributes to the health and well-being of its host. The solitary tunicate Ciona intestinalis emerges as a model organism for studying host-microbe interactions taking place in the gut, however, the potential of its gut-associated microbiota for marine biodiscovery remains unexploited. In this study, we set out to investigate the diversity, chemical space, and pharmacological potential of the gut-associated microbiota of C. intestinalis collected from the Baltic and North Seas. In a culture-based approach, we isolated 61 bacterial and 40 fungal strains affiliated to 33 different microbial genera, indicating a rich and diverse gut microbiota dominated by Gammaproteobacteria. In vitro screening of the crude microbial extracts indicated their antibacterial (64% of extracts), anticancer (22%), and/or antifungal (11%) potential. Nine microbial crude extracts were prioritized for in-depth metabolome mining by a bioactivity- and chemical diversity-based selection procedure. UPLC-MS/MS-based metabolomics combining automated (feature-based molecular networking and in silico dereplication) and manual approaches significantly improved the annotation rates. A high chemical diversity was detected where peptides and polyketides were the predominant classes. Many compounds remained unknown, including two putatively novel lipopeptides produced by a Trichoderma sp. strain. This is the first study assessing the chemical and pharmacological profile of the cultivable gut microbiota of C. intestinalis.

Citation

Caroline Utermann, Vivien A Echelmeyer, Ernest Oppong-Danquah, Martina Blümel, Deniz Tasdemir. Diversity, Bioactivity Profiling and Untargeted Metabolomics of the Cultivable Gut Microbiota of Ciona intestinalis. Marine drugs. 2020 Dec 24;19(1)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33374243

View Full Text