Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Traditional brominated flame retardants (BFRs) negatively affect the environment and human health, especially in the sensitive (developing) nervous system. Considering the physicochemical similarities between novel brominated flame retardants (NBFRs) and BFRs, more and more evidence reveals the neurotoxic effects of NBFRs. We reviewed the neuro(endocrine) toxic effects of NBFRs in vivo and in vitro and discussed their action mechanisms based on the available information. The neurotoxic potential of NBFRs has been demonstrated through direct neurotoxicity and disruption of the neuroendocrine system, with adverse effects on neurobehavioral and reproductive development. Mechanistic studies have shown that the impact of NBFRs is related to the complex interaction of neural and endocrine signals. From disrupting the gender differentiation of the brain, altering serum thyroid/sex hormone levels, gene/protein expression, and so on, to interfere with the feedback effect between different levels of the HPG/HPT axis. In this paper, the mechanism of neurotoxic effects of NBFRs is explored from a new perspective-neuro and endocrine interactions. Gaps in the toxicity data of NBFRs in the neuroendocrine system are supplemented and provide a broader dataset for a complete risk assessment. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.


Liying Dong, Shutao Wang, Jinze Qu, Hong You, Dongmei Liu. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity. Ecotoxicology and environmental safety. 2021 Jan 15;208:111570

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33396099

View Full Text