Correlation Engine 2.0
Clear Search sequence regions

  • humans (1)
  • melancholia (18)
  • patients (2)
  • self (2)
  • students (1)
  • Sizes of these terms reflect their relevance to your search.

    The status of melancholia as a categorical or dimensional condition remains unclear, and no measure of melancholia has achieved definitive status. This study aimed to use a machine learning approach to assess whether a pre-established cut-off score on the Sydney Melancholia Prototype Index (SMPI) provided clear differentiation of melancholic/non-melancholic depression, and to identify the items making the most distinct contribution. We analysed amalgamated data sets of 1513 clinically depressed patients assessed via the clinician-rated version of the SMPI (SMPI-CR). We also evaluated the self-report version of the SMPI (SMPI-SR) in a combined clinical/community sample of 2025 depressed patients and senior high school students. Rule ensembles were derived in which the outcome measure was the presence/absence of melancholia (defined as scoring at or above a SMPI cut-off score that had been established in previous studies) and the predictive variables were the individual SMPI items. The pre-established SMPI cut-off score was confirmed as differentiating melancholic/non-melancholic with near perfect accuracy for the SMPI-CR, and with very high accuracy for the SMPI-SR. The relative importance of all SMPI items was quantified. It is difficult to validate SMPI-assigned diagnoses due to the lack of any similar measures. The SMPI-CR was confirmed to be a highly precise instrument for differentiating melancholic and non-melancholic depression. Its use will advance clinical decision making and studies evaluating causes, mechanisms and treatments for the two depressive sub-types, as well as assist clarification as to whether melancholia is categorically or dimensionally distinct from non-melancholic depression. Copyright © 2020. Published by Elsevier B.V.


    Gordon Parker, Michael J Spoelma. Melancholia defined with the precision of a machine. Journal of affective disorders. 2021 Mar 01;282:69-73

    Expand section icon Mesh Tags

    PMID: 33401125

    View Full Text