Correlation Engine 2.0
Clear Search sequence regions

  • across (1)
  • benchmark (1)
  • CNNs (1)
  • eeg (1)
  • help (1)
  • humans (1)
  • patients (4)
  • seizures (3)
  • short term memory (1)
  • tonic- clonic seizures (3)
  • Sizes of these terms reflect their relevance to your search.

    Timely detection of seizures is crucial to implement optimal interventions, and may help reduce the risk of sudden unexpected death in epilepsy (SUDEP) in patients with generalized tonic-clonic seizures (GTCSs). While video-based automated seizure detection systems may be able to provide seizure alarms in both in-hospital and at-home settings, earlier studies have primarily employed hand-designed features for such a task. In contrast, deep learning-based approaches do not rely on prior feature selection and have demonstrated outstanding performance in many data classification tasks. Despite these advantages, neural network-based video classification has rarely been attempted for seizure detection. We here assessed the feasibility and efficacy of automated GTCSs detection from videos using deep learning. We retrospectively identified 76 GTCS videos from 37 participants who underwent long-term video-EEG monitoring (LTM) along with interictal video data from the same patients, and 10 full-night seizure-free recordings from additional patients. Using a leave-one-subject-out cross-validation approach (LOSO-CV), we evaluated the performance to detect seizures based on individual video frames (convolutional neural networks, CNNs) or video sequences [CNN+long short-term memory (LSTM) networks]. CNN+LSTM networks based on video sequences outperformed GTCS detection based on individual frames yielding a mean sensitivity of 88% and mean specificity of 92% across patients. The average detection latency after presumed clinical seizure onset was 22 seconds. Detection performance increased as a function of training dataset size. Collectively, we demonstrated that automated video-based GTCS detection with deep learning is feasible and efficacious. Deep learning-based methods may be able to overcome some limitations associated with traditional approaches using hand-crafted features, serve as a benchmark for future methods and analyses, and improve further with larger datasets.


    Yonghua Yang, Rani A Sarkis, Rima El Atrache, Tobias Loddenkemper, Christian Meisel. Video-Based Detection of Generalized Tonic-Clonic Seizures Using Deep Learning. IEEE journal of biomedical and health informatics. 2021 Aug;25(8):2997-3008

    Expand section icon Mesh Tags

    PMID: 33406048

    View Full Text