Correlation Engine 2.0
Clear Search sequence regions


  • glaucoma (3)
  • layer (5)
  • patients (1)
  • Sizes of these terms reflect their relevance to your search.

    Glaucomatous damage can be quantified by measuring the thickness of different retinal layers. However, poor image quality may hamper the accuracy of the layer thickness measurement. We determined the effect of poor image quality (low signal-to-noise ratio) on the different layer thicknesses and compared different segmentation algorithms regarding their robustness against this degrading effect. For this purpose, we performed OCT measurements in the macular area of healthy subjects and degraded the image quality by employing neutral density filters. We also analysed OCT scans from glaucoma patients with different disease severity. The algorithms used were: The Canon HS-100's built-in algorithm, DOCTRAP, IOWA, and FWHM, an approach we developed. We showed that the four algorithms used were all susceptible to noise at a varying degree, depending on the retinal layer assessed, and the results between different algorithms were not interchangeable. The algorithms also differed in their ability to differentiate between young healthy eyes and older glaucoma eyes and failed to accurately separate different glaucoma stages from each other. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

    Citation

    Tuomas Heikka, Barry Cense, Nomdo M Jansonius. Retinal layer thicknesses retrieved with different segmentation algorithms from optical coherence tomography scans acquired under different signal-to-noise ratio conditions. Biomedical optics express. 2020 Dec 01;11(12):7079-7095


    PMID: 33408981

    View Full Text