Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae. � The Author(s) 2021. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Citation

Michiki Aso, Renon Matsumae, Ayumi Tanaka, Ryouichi Tanaka, Atsushi Takabayashi. Unique Peripheral Antennas in the Photosystems of the Streptophyte Alga Mesostigma viride. Plant & cell physiology. 2021 Jul 17;62(3):436-446

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33416834

View Full Text