Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Antibiotic contaminants in aqueous media pose a serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly and in situ electrochemical reduction method is utilized to tailor silver nanoparticles (AgNPs)-coated GNRs (AgNPs/GNRs) large-scale vertical arrays. These AgNPs/GNRs arrays exhibit outstanding surface-enhanced Raman scattering (SERS) activities because of abundant Raman hot-spots among the adjacent AgNPs and GNRs, but also excellent stability and reproducibility due to the close-packed arrayed nanostructure. These remarkable features validate this arrayed substrate for high-sensitivity 4-aminothiophenol analysis with a detection limit of 0.35 pM and self-cleaning via electrochemical stripping of the adsorbed analytes and AgNPs from the GNRs arrays, therefore realizing renewable SERS applications. Moreover, the distinct SERS performance of AgNPs/GNRs arrays is verified via the analysis of multiplexed antibiotics at tens of picomolar level and no apparent changes of SERS activities are observed when recyclability is explored. The result demonstrates that the proposed AgNPs/GNRs arrays provide a novel strategy for avoiding conventional, disposable SERS substrates, as well as expanding SERS applications for simultaneous sensing and stripping of environmental contaminants.

Citation

Xiaoya Peng, Dan Li, Yuanting Li, Haibo Xing, Wei Deng. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection. Journal of materials chemistry. B. 2021 Jan 28;9(4):1123-1130

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33427845

View Full Text