Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pure nanocellulose was extracted from agricultural waste material namely jackfruit (Artocarpus heterophyllus) peel through acid hydrolysis. The extraction method utilizes soapnut solution as an eco-friendly bleaching agent in order to avoid environment polluting chlorinated chemicals. Various thin films were prepared by solvent casting nanocellulose and different plasticizers namely glycerol, polyethylene glycol, polyvinyl alcohol, triethyl citrate along with novel filler, Boswellia serrata commonly known as frankincense. Thin films were characterized by FT-IR, XRD and the surface modifications were investigated using FESEM. The physical, mechanical, thermal properties and biodegradability of the film were also reported. The surface morphology was improved by different plasticizers and a self-assembly was obtained due to more stable hydrogen bonding between the nanocellulose, plasticizers and filler during the film formation. Thermal investigations of plasticizers/Boswellia serrata incorporated thin films revealed an increase in glass transition temperature of nanocellulose. Results indicate that these films are biodegradable and compostable in nature and could be used as substitute for petroleum derived plastics. Copyright © 2020 Elsevier B.V. All rights reserved.

Citation

R Reshmy, Eapen Philip, P H Vaisakh, Shibin Raj, Sherly Annie Paul, Aravind Madhavan, Raveendran Sindhu, Parameswaran Binod, Ranjna Sirohi, Arivalagan Pugazhendhi, Ashok Pandey. Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler. The Science of the total environment. 2021 May 01;767:144285

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33429269

View Full Text