Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation. © 2021 Chinen et al.

Citation

Takumi Chinen, Kaho Yamazaki, Kaho Hashimoto, Ken Fujii, Koki Watanabe, Yutaka Takeda, Shohei Yamamoto, Yuka Nozaki, Yuki Tsuchiya, Daisuke Takao, Daiju Kitagawa. Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. The Journal of cell biology. 2021 Feb 01;220(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33443571

View Full Text