Correlation Engine 2.0
Clear Search sequence regions

  • aldehydes (1)
  • alkanes (2)
  • biosynthesis (2)
  • CER1 (1)
  • drought (16)
  • esters (1)
  • FATB (1)
  • genes (3)
  • genes plant (1)
  • genotypes (5)
  • grain (1)
  • plant leaves (1)
  • SbWINL1 (1)
  • sorghum (5)
  • wax (12)
  • Sizes of these terms reflect their relevance to your search.

    Wax accumulation on the sorghum surface plays an important role in drought tolerance by preventing non-stomatal water loss. Thereby, the effect of post-flowering drought stress (PFDS) on the epicuticular wax (EW) amount, relative water content (RWC), chlorophyll, and grain yield in sorghum drought contrasting genotypes were investigated. The experiment was conducted as a split-plot based on randomized complete block design (RCBD) with two water treatments (normal watering and water holding after 50% flowering stage), and three genotypes (Kimia and KGS23 as drought-tolerant and Sepideh as drought-susceptible). Scanning electron microscopy and GC-MS analyses were used to determine the wax crystals density and its compositions, respectively. In addition, based on literature reviews and publicly available datasets, six wax biosynthesis drought stress-responsive genes were chosen for expression analysis. The results showed that the amounts of EW and wax crystals density were increased in Kimia and Sepideh genotypes and no changed in KGS23 genotype under drought stress. Chemical compositions of wax were classified into six major groups including alkanes, fatty acids, aldehydes, esters, alcohols, and cyclic compounds. Alkanes increment in drought-tolerant genotypes led to make an effective barrier against the drought stress to control water losses. In addition, the drought-tolerant genotypes had higher levels of RWC compared to the drought-susceptible ones, resulted in higher yield produced under drought condition. According to the results, SbWINL1, FATB, and CER1 genes play important roles in drought-induced wax biosynthesis. The results of the present study revealed a comprehensive view of the wax and its compositions and some involved genes in sorghum under drought stress. Copyright © 2021 Elsevier Masson SAS. All rights reserved.


    Sepideh Sanjari, Zahra-Sadat Shobbar, Faezeh Ghanati, Sanaz Afshari-Behbahanizadeh, Mostafa Farajpour, Mojtaba Jokar, Azim Khazaei, Maryam Shahbazi. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress. Plant physiology and biochemistry : PPB. 2021 Feb;159:383-391

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 33450508

    View Full Text