Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Silk tree, Albizia julibrissin Duraz, is an old ornamental plant and extensively cultivated in Asia. Previous works have discovered that the terpenoids were the dominating compounds in the floral VOC of A. julibrissin, however the biosynthesis of these terpenoids was poorly understood so far. Here, 11 terpene synthase genes (TPSs) were identified by transcriptome sequencing that fell into TPS-a, TPS-b and TPS-g subfamilies. The enzymatic activity tests showed that five genes were functional: AjTPS2 was a sesquiterpene synthase and produced α-farnesene and (Z, E)-β-farnesene; AjTPS5 was able to catalyze the formation of five monoterpenes and nine sesquiterpenes; AjTPS7, AjTPS9 and AjTPS10 were dedicated monoterpene synthases, as AjTPS7 and AjTPS10 formed the single product β-ocimene and linalool, respectively, and AjTPS9 produced γ-terpinene with other three monoterpenes. More importantly, the main catalytic products of the characterized AjTPSs were consistent with the terpenoids observed in A. julibrissin volatiles. Combining terpene chemistry, TPSs biochemical activities and gene expression analysis, we demonstrate that AjTPS2, AjTPS5, AjTPS7, AjTPS9 and AjTPS10 are responsible for the volatile terpenoids biosynthesis in A. julibrissin. Copyright © 2020. Published by Elsevier GmbH.


Guanhua Liu, Mei Yang, Xuemin Yang, Xiaoying Ma, Jianyu Fu. Five TPSs are responsible for volatile terpenoid biosynthesis in Albizia julibrissin. Journal of plant physiology. 2021 Mar-Apr;258-259:153358

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33453433

View Full Text