Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Marine pollution stemming from plastic microbeads (MBs) in personal care products has been substantially increased because of their nonbiodegradability and high adsorption capacity against persistent organic pollutants (POPs) in seawater. Moreover, the manufacturing process of MBs has been based on wet processes, such as emulsification, microfluidics, and precipitation. Therefore, a green process for obtaining biodegradable MBs is urgently necessary. Aliphatic polyesters, such as poly(lactic acid) (PLA, radiation-degradable) and poly(ε-caprolactone) (PCL, radiation-cross-linkable), have biodegradability and melt processability. The eco-friendly melt electrospraying process is a simple and cost-effective method for the preparation of MBs without the need for organic reagents. In this study, the PLA and PCL MBs were obtained by adjusting the main processing parameters during the melt electrospraying process. The weight losses of PLA and PCL MBs in aqueous environments occurred faster than those of positive controls, and the thermal transition parameters were decreased with the hydrolytic degradation of MBs. In the POP adsorption test, the biodegradable MBs showed poor adsorption because of their low specific surface area. The results of the cleansing efficiency test indicated that biodegradable MBs have great potential as more sustainable cosmetics to replace nondegradable MBs.


Hyeong Chan Nam, Won Ho Park. Aliphatic Polyester-Based Biodegradable Microbeads for Sustainable Cosmetics. ACS biomaterials science & engineering. 2020 Apr 13;6(4):2440-2449

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33455355

View Full Text