Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The nitroxide spin label is the most widely used probe for electron paramagnetic resonance (EPR) spectroscopy studies of the structure and function of biomolecules. However, the role of surrounding environments in determining the dynamics of nitroxide spin labels in biological complex systems remains to be clarified. This study aims to characterize the dynamics and environmental structure of spin labels in the voltage-sensing domain (VSD) of a KvAP potassium channel by means of molecular dynamics (MD) studies. MD simulations for unlabeled and 132 spin-labeled KvAP-VSD models (spin labels introduced at positions 20-151) were carried out in a phospholipid bilayer to evaluate conformational dynamics of nitroxide spin-label side chains in the VSD. Structural flexibility, conformational freedom, and orientation of the spin-label side chains were investigated in relation to their dynamics in different microenvironments. The analysis of MD data showed that the attached spin-label probe did not severely perturb the protein dynamics. The conformational freedoms of the nitroxide side chain vary with the physical structure of the surrounding environments. The two terminal dihedral angles of the nitroxide side chain tend to cluster and adopt several preferred rotameric states. From the nearest-neighbor analysis, the spin label can be exposed to either a homogeneous or heterogeneous environment with various exposure scenarios. The dynamical movement of KvAP-VSD is high at a water-exposed site, moderate in the membrane, and low in the protein core. Understanding the structure and dynamics behaviors of spin labels helps to manage the experimental uncertainty and avoid misleading interpretation in relation to the protein structure.

Citation

Lan Le Nguyen Ngoc, Ras B Pandey, Pornthep Sompornpisut. Dynamics and Environmental Characteristics of Spin Labels in a KvAP Voltage Sensor by Molecular Dynamics Simulations. The journal of physical chemistry. B. 2021 Jan 28;125(3):748-756

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33459015

View Full Text