Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Occlusion of exposed dentin tubules may eliminate or reduce dentin hypersensitivity by hindering fluid movements within the tubules. In this study, the mode of action of spherical particles of amorphous calcium magnesium phosphate (180-440 nm in diameter) was studied. A degradation study of the particles in Tris-HCl buffer showed that the particles continuously released Ca2+, Mg2+, and phosphate, and XRD analysis revealed the formation of hydroxyapatite (HA) after 1 week. The occluding effect and efficacy of the spherical particles as an occluding agent were evaluated in an in vitro study. The ACMP particles were incorporated in a gel intended for at-home use and tested on extracted human molars. Application of the particles followed by incubation in artificial saliva resulted in occlusion of exposed tubules, and examination with SEM showed that the particles could penetrate the tubules down to 100 μm from the dentin surface. Transformation of the particles into nanocrystalline HA-structures (nanoHA) was initiated at the dentin surface within 12 h of application, and tubule penetration of the particles, accompanied by further ion release and diffusion of ions, resulted in deep intratubular occlusion in the majority of the tubules within 3 days from application. NanoHA was tightly adhered to the tubule walls, filling the entire tubule volume after 7 days. The results of this study demonstrate the mode of action of the amorphous calcium magnesium phosphate particles in occluding exposed dentin tubules. Interaction with saliva and transformation of the particles within the tubules inducing further mineralization indicate that the particles may be used as an effective treatment to reduce dentin hypersensitivity.

Citation

Camilla Berg, Erik Unosson, Håkan Engqvist, Wei Xia. Amorphous Calcium Magnesium Phosphate Particles for Treatment of Dentin Hypersensitivity: A Mode of Action Study. ACS biomaterials science & engineering. 2020 Jun 08;6(6):3599-3607

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33463162

View Full Text