Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Hydrolysis catalyzed by general esterases (GEs) is the most efficient route for hydrolyzation of pyrethroid insecticides. Organophosphate (OP) and carbamate (CB) insecticides are known to inhibit GEs in addition to acetylcholinesterase (AChE), which is their main target. We hypothesize that synergies can be induced by OPs and CBs when mixed with pyrethroids, due to their inhibition of GE-dependent detoxification of pyrethroids. To test this hypothesis, we conducted mixture toxicity experiments with Daphnia magna using α-cypermethrin (α-cyp) in combination with the noninsecticidal OP tetraisopropyl pyrophosphoramide (iso-OMPA) and five AChE inhibitors diazinon, chlorpyrifos, chlorfenviphos, parathion, and aldicarb. In addition, the in vivo GE activity inhibition was measured for all compounds. Up to 10-fold synergy was found between α-cyp and iso-OMPA, and the degree of synergy correlated linearly with the inhibition of the GE activity. No synergy, however, was found in any of the insecticide mixtures nor was the GE activity inhibited within the nonlethal concentration range tested. It was concluded that the effect of the insecticides on AChE occurred at lower concentrations than their effect on GEs, making the daphnids become immobilized before any synergistic effects on mortality could be observed. The implications of the findings are discussed from a risk assessment perspective.

Citation

Yi Cao, Alberto Ibáñez Navarro, Lucas Perrella, Nina Cedergreen. Can Organophosphates and Carbamates Cause Synergisms by Inhibiting Esterases Responsible for Biotransformation of Pyrethroids? Environmental science & technology. 2021 Feb 02;55(3):1585-1593

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33470798

View Full Text