Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Vitamin D3 (VD3) as an essential lipid-soluble active ingredient with numerous applications in food and pharmaceutical sectors; however, poor water solubility reduces its bioavailability significantly. Application of protein-polysaccharide complexes as a promising way to protect and trigger programmed release of bioactive molecules has established an optimal window in nutraceutical delivery systems. In this study, complexes of β-lactoglobulin (Blg) and cress seed mucilage (CSM) were used to retain VD3 at undesirable circumstances, such as acidic pH values. The interaction of CSM-Blg was studied by rheological tests and the best formulation was chosen for encapsulation of VD3 via crosslinking with calcium ions (2-10 mM). The results demonstrated that complexation protect VD3 at low pH values with the maximum encapsulation efficiency of 84.2 %. The in vitro study indicated that Blg-CSM-VD3 was more stable in simulated gastric fluid, and in turn VD3 was released in simulated intestinal fluid; the complexes treated with calcium ions had a slower release rate than normal complexes. The release trend of VD3 followed the diffusion-Fickian law and the principal interactions included hydrophobic, electrostatic and hydrogen bonding. The results indicated that Blg-CSM complexes can retain VD3 at acidic environment and induce sustained release, which brings about practical advantages for vitamin delivery in the food and pharmaceutical sectors. Copyright © 2020 Elsevier Ltd. All rights reserved.

Citation

Afsaneh Taheri, Mahdi Kashaninejad, Ali Mohammad Tamaddon, Seid Mahdi Jafari. Vitamin D3 cress seed mucilage -β-lactoglobulin nanocomplexes: Synthesis, characterization, encapsulation and simulated intestinal fluid in vitro release. Carbohydrate polymers. 2021 Mar 15;256:117420

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 33483012

View Full Text