Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Eosinophils are an important subtype of leukocytes derived from bone marrow multipotent hematopoietic stem cells and represent about 1% of leukocytes in circulating blood. In homeostatic conditions, eosinophils reside in the intestine to maintain the balance of immune responses by communicating with gut microbes without causing inflammation. However, under the stressed or diseased condition, eosinophils degranulate, releasing their granule-derived cytotoxic proteins that are involved in inflammatory responses. Various eosinophil-associated inflammatory diseases are eosinophilic esophagitis (EoE), eosinophilic gastroenteritis (EG), and eosinophilic colitis (EC), together called EGID, asthma, hypereosinophilic syndrome, and eosinophilic pneumonia (EP). Eosinophil degranulation results in the release of their four toxic proteins [major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN)] which promote disease pathogenesis. Pancreatitis is the inflammatory disease of the pancreas that arises due to blockage of the pancreatic duct, trypsinogen mutation, alcohol consumption, and repeated occurrence of pancreatitis leading to chronic pancreatitis (CP); subsequently some CP patients may also develop pancreatic cancer. The presence of eosinophils is now shown in various case reports with acute, recurrent acute, and chronic pancreatitis and pancreatic cancer indicating the role of eosinophils in the pathogenesis of various pancreatic inflammatory disorders. However, the details of eosinophil accumulation during pancreatic diseases are not well explored and need further attention. Overall, the chapter provides the current understanding of reported eosinophils associated with inflammatory diseases like EGID diseases, asthma, and pancreatic disorders, i.e., acute, chronic pancreatitis, and pancreatic cancer. This knowledge will be helpful for future studies to develop novel treatment options for the eosinophils associated diseases. Therefore, more efforts are needed to perform preclinical and clinical studies in this field for the successful development of eosinophil-targeting treatments for a variety of eosinophil-associated diseases.


Sathisha Upparahalli Venkateshaiah, Murli Manohar, Hemanth Kumar Kandikattu, Anil Mishra. Experimental Modeling of Eosinophil-Associated Diseases. Methods in molecular biology (Clifton, N.J.). 2021;2241:275-291

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33486743

View Full Text