Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Lupeol is known to be plentiful in fruits or plant barks and has an antimicrobial effect, however, its mode of action(s) has yet to be determined. To elucidate lupeol generates nitric oxide (NO), which is recognized for possessing an antimicrobial activity, intracellular NO was measured in Escherichia coli using DAF-FM. Using the properties of NO passing through plasma membrane easily, increased malondialdehyde levels have shown that lupeol causes lipid peroxidation, and the resulting membrane depolarization was confirmed by DiBAC4(3). These data indicated that lupeol-induced NO is related to the destruction of bacterial membrane. Further study was performed to examine whether NO, known as a cell proliferation inhibitor, affects bacterial cell division. As a result, DAPI staining verified that lupeol promotes cell division arrest, and followed by early apoptosis is observed in Annexin V/PI double staining. Even though these apoptotic hallmarks appeared, the endonuclease failed to perform properly with supporting data of decreased intracellular Mg2+ and Ca2+ levels without DNA fragmentation, which is confirmed using a TUNEL assay. These findings indicated that lupeol-induced NO occurs DNA fragmentation-independent bacterial apoptosis-like death (ALD). Additionally, lupeol triggers DNA filamentation and morphological changes in response to DNA repair system called SOS system. In accordance with the fact that ALD deems to SOS response, and that the RecA is considered as a caspase-like protein, increase in caspase-like protein activation occurred in E. coli wild-type, and no ΔRecA mutant. In conclusion, these results demonstrated that the antibacterial mode of action(s) of lupeol is an ALD while generating NO. © 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.


Heesu Kim, Dong Gun Lee. Lupeol-induced nitric oxide elicits apoptosis-like death within Escherichia coli in a DNA fragmentation-independent manner. The Biochemical journal. 2021 Feb 26;478(4):855-869

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 33522568

View Full Text