Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This article reviews the current classification system of primary spinal cord tumors and explores evolving diagnostic and therapeutic strategies for both primary tumors and metastatic tumors to various compartments of the spinal cord. The 2016 World Health Organization classification system allows for more precise prognostication of and therapy for spinal cord tumors and has identified new entities, such as the diffuse midline glioma, H3 K27M mutant. Whole-exome sequencing reveals that the genetic background of primary glial spinal cord neoplasms differs from that of their intracranial histologic counterparts in ways that can potentially influence therapy. Targeted and immune checkpoint therapies have improved survival for patients with melanoma and lung cancer and have simultaneously produced novel complications by enhancing radiation toxicity in some cases and by facilitating the emergence of novel autoimmune and paraneoplastic syndromes involving the spinal cord, such as neuromyelitis optica spectrum disorder and syndromes associated with anti-Hu and collapsin response mediator protein-5 (CRMP-5) antibodies. These conditions must be distinguished from tumor or infection. Epidural spinal cord compression treatment paradigms have changed with the advent of robotic surgery and advances in radiation therapy. Neoplastic myelopathies subsume a wide spectrum of pathologies. Neoplastic cord involvement may be primary or secondary and may be approached diagnostically by the particular spinal cord compartment localization. Primary spinal cord tumors account for only 2% to 4% of primary central nervous system tumors, ranging from low-grade glial neoplasms to malignant tumors. Metastatic malignancy to the epidural or leptomeningeal spaces is more common than primary cord tumors. Differential diagnoses arising in the course of evaluation for cord tumors include myelopathies related to radiation or chemotherapy and paraneoplastic syndromes, all of which are sources of significant morbidity. Knowledge of genetic syndromes and the biologic behavior of diverse histologies together with selective application of surgery, radiation, and targeted therapies can facilitate diagnosis, minimize surgical morbidity, and prolong quality of life. Copyright © 2021 American Academy of Neurology.

Citation

Amy A Pruitt. Neoplastic Myelopathies. Continuum (Minneapolis, Minn.). 2021 Feb 01;27(1):121-142


PMID: 33522739

View Full Text